
Representation of the RCS Reference Model

Architecture Using an Architectural Description

Language

Elena Messina, Christopher Dabrowski, Hui-Min Huang, and John Horst

National Institute of Standards and Technology, Gaithersburg MD 20899, USA

emessina@nist.gov,cdabrowski@nist.gov,horst@nist.gov,hhuang@nist.gov

Abstract. The Real-Time Control System (RCS) Reference Model Ar-

chitecture provides a well-de�ned strategy for development of software

components for applications in robotics, automated manufacturing, and

autonomous vehicles. ADLs are formally de�ned languages for speci�-

cation of software system's designs. In this report, we describe the re-

sults of an investigation into the use of an ADL to specify RCS software

systems, and assess the potential value of ADLs as speci�cation and

development tools for RCS domain experts. The report also discusses

potential inuence of ADLs for commercial software development tools

and component-based development.

1 Introduction

Architectural Description Languages (ADLs) are speci�cation languages for rig-

orously describing and analyzing software system designs. This report provides

the results of an investigation into the use of ADLs for formally de�ning the

National Institute of Standards and Technology (NIST) RCS Reference Model

Architecture [5].

The RCS Reference Model Architecture provides well-de�ned guidelines for

construction of control software for autonomous real-time systems. We are study-

ing means of formally representing architectures such as RCS in order to facilitate

development, understanding, and analysis of complex systems. Communicating

RCS in an unambiguous manner was our initial motivation. Beyond that, several

potential bene�ts may accrue. ADLs may provide means of guiding construction

of complex systems according to a given reference architecture. This can enhance

productivity, reliability, and help ensure conformance to a speci�ed architecture.

Analysis tools associated with ADLs may enable developers to study the behav-

iors and performance of their system design. Although our study focussed on the

RCS architecture, we believe that our results are applicable to other architectural

models for complex systems.

All signi�cant ADLs were reviewed in a literature search that identi�ed key

language features relevant to RCS. Individual ADLs were examined in detail to

assess their suitability as speci�cation languages for capturing the structure and

function of the RCS Control Node. A detailed, comparative analysis of ADL

2

features was not the scope of this study; readers interested in such an analysis

should consult [16]. A single ADL|Rapide [15]|was selected to construct a

prototype speci�cation of a signi�cant portion of the RCS Intelligent Control

Node. The conclusions from out experiment provide a basis for both identifying

requirements for ADLs to specify RCS software architectures and components as

well as recommending future research directions for ADLs. We believe that our

�ndings can be relevant to the application of ADLs to other complex, real-time

architectures.

2 The RCS Reference Architecture

2.1 Overview of RCS Concepts

Developed over the course of two decades at the National Institute of Standards

and Technology and elsewhere, RCS has been applied to multiple and diverse

systems [4]. RCS application examples include coal mining automation [11], the

NBS/NASA Standard Reference Model Architecture for the Space Station Teler-

obotic Servicer (NASREM) [1], and a control system for a U.S. Postal Service

Automated Stamp Distribution Center [26]. Manufacturing applications include

the Open Architecture Enhanced Machine Controller [3]and an Inspection Work-

station [18].

RCS provides a reference architecture and an engineering methodology to aid

designers of complex control systems. Guidelines are provided for decomposition

of the problem into a set of control nodes, which are arranged hierarchically. The

decomposition into levels of the hierarchy is guided by control theory, taking into

account system response times and other factors, such as planning horizons. RCS

is focussed primarily on the real-time control domain. It can be further special-

ized into application-speci�c versions. 4-D/RCS [5] is one such version, which

is aimed at the design and implementation of control systems for intelligent

autonomous vehicles for military scout missions. 4-D/RCS has been selected as

the software architecture for Department of Defense Demo III eXperimental Un-

manned Vehicle (XUV) Program, managed by the Army Research Laboratories

[23]. This particular avor of RCS was studied with respect to ADLs. Figure 1 is

a high-level diagram depicting a portion of an RCS hierarchy for an autonomous

vehicle. Each node in the hierarchy is built upon the SP-WM-BG-VJ internal

elements shown in Figure 2. RCS prescribes a building-block approach to de-

signing and implementing systems. The building blocks are control nodes that

contain the same basic elements. The elements, shown in Figure 2, are behavior

generation (BG), world modeling (WM), value judgement(VJ), and sensory pro-

cessing (SP). Associated with WM is a Knowledge Base (KB), which contains

longer-term information. Each node receives goals from its superior and, through

the orchestration of BG, WM, JV, and SP, generates a �ner resolution set of

goals for its subordinate nodes. The RCS control node uses an estimated model

of the world, generated via SP and WM, to assess its progress with respect to

the goals it was given and to make necessary adjustments to its behavior. BG's

sub-modules are the job assigner (JA), a set of plan schedulers (SC), a plan

3

Plan for the next 50 seconds over 1 km2

0.3 m resolution map

Plan for the next 5 seconds over 50 m2

0.03 m resolution map

Plan for the next 0.5 seconds over 5 m2

0.003 m resolution map

Plan for the next 0.05 seconds

Vehicle

Communication Locomotion

Steering

Servo

Actuators and Sensors

Throttle

Servo

Fig. 1. Example RCS Hierarchy for an Autonomous Scout Vehicle

selector (PS), and a set of executors (EX). One SC and EX exist for each subor-

dinate controlled by a particular RCS node. JA decomposes incoming commands

into job assignments for each of its subordinates. Each SC computes a schedule

for its given assignment. JA and SC produce tentative plans based on available

resources. PS selects from the candidate plans by using WM to simulate the ex-

ecution of the plans and VJ to evaluate the outcomes of the tentative plans. The

corresponding EX executes the selected plan, coordinate actions among subor-

dinates and correcting for errors between the plan and the state of the world

estimated by the WM.

Fig. 2. Model for an RCS Control Node.

3 Architectural Description Languages

3.1 Overview of Architectural Description Languages (ADLs)

Garlan and Perry de�ne a software architecture as consisting of the \structure

of the components of a program/system, their interrelationships, and principles

and guidelines governing their design and evolution over time" [9]. An ADL is

4

\a language that provides features for modeling a software system's conceptual

architecture" [16].

ADLs provide language constructs for specifying the essential elements of a

system's software architecture. A generic set of ADL capabilities has been iden-

ti�ed in [10][16][28]. ADLs commonly describe software components by de�ning

their interfaces and behavior in response to externally or internally generated

stimuli. An interface de�nition may include a signature, i.e., messages and com-

mands received and sent, as well as constraints on the signature.

Some ADLs support speci�cation of computations performed by a system,

referred to as system behavior. Usually, an ADL employs a formally de�ned

descriptive method or underlying computational model to provide the neces-

sary semantics. Constraints on behavior are also de�ned in terms of the com-

putational model. Examples of computational models are Finite State Machines

(FSM), Communicating Sequential Processes (CSP) and Partially-Ordered Sets

of Events (POSETS). An ADL may allow description of the behavior of compo-

nent interfaces, component internals, and component connections.

Shaw [22] and Allen [6] provide rules or constraints that place limitations

on how components may be connected and what system topologies may be de-

scribed. One example of an architectural style is a top-down hierarchical archi-

tecture. Some ADLs allow explicit declaration of architectural styles.

The use of a well de�ned, rigorous speci�cation language provides a basis

for formal analysis of a speci�cation and the veri�cation of software system

designs. Some ADLs employ formal proof techniques to determine whether de-

sirable properties, such as internal consistency, hold within a speci�cation. Anal-

ysis of ADL speci�cations may also take place through simulation support tools,

which allow the speci�cation to be executed and a result to be computed, thus

simulating the computations to be performed by the system being speci�ed.

Gaps in the support provided by object-oriented tools and methodologies [13]

further stimulated interest in the potential of ADLs. Object-oriented methods

in general are data-centric, providing only for some generic behavior description

capabilities. Analysis of the architecture and simulation of the execution of an

architecture are not possible in most object-oriented tools. In response to these

gaps, the Object Management Group recently issued a Request for Proposals

under the title \UML Pro�le for Scheduling, Performance and Time" [21]. This

proposal is aimed at expanding the UML to include support for modeling of

time-related paradigms, which are essential for the design and speci�cation of

real-time systems.

3.2 The Rapide ADL

Rapide [15] is an ADL and supporting tool set developed at Stanford University

in the mid-1990s. This ADL was chosen as the primary focus of this study

because of its well-developed capability for representing and simulating real-time

system designs.

Rapide supports most of the features described above that are common to

ADLs. Rapide permits de�nition of a set of component interface types, each of

5

which has a signature that includes events generated and received by components

of that type and a description of the component's behavior. An interface may also

de�ne constraints that require dependencies between events, place limitations on

the order of events, constrain parameter values, or make other limitations. The

internal details of the components themselves|known as modules|may also be

speci�ed. A module description speci�es internal behavior and supporting data

structures that allow the module to conform to its interface.

The software architecture is formally described by connecting types of events

generated in one interface speci�cation to events received by another interface.

A module conforming to an interface may be decomposed into a sub-architecture

consisting of a set of connected component interfaces.

Connections between types of events of di�erent interfaces and the speci�ca-

tion of a component's behavior de�ne causal dependencies of the events. During

the simulated execution of a software architecture, these dependencies can be

aggregated to form POSETs, or partially ordered set of events.

An event is said to be causally dependent on all events that either directly

result in its generation or in the generation of its predecessors. It is independent

of all other events. In actual Rapide speci�cations of architectures, very large

causal sequences of event types and event constraints can be de�ned both in

interface de�nitions and as part of connections between interfaces. The causal

sequences serve as a basis for \executing" a speci�cation using Rapide software

support tools to produce simulations.

In Rapide the POSET is the basis for automated analysis conducted by an

associated toolset. A Rapide speci�cation may be de�ned using the RAPARCH

tool, which has a graphical front-end, to specify interfaces and interface con-

nections in a software architecture. When compiled and executed, the Rapide

speci�cation produces a POSET for the de�ned architecture. Rapide provides

a simulation tool called RAPTOR for producing an interactive graphical ani-

mation of the execution of the speci�cation in which interfaces and connections

are depicted as icons while event icons move between interfaces. The POSET

Viewer gives a static picture of a POSET with events and causal arrows between

events. Query functions can be used to select interesting subsets of the POSET

and provide detailed information. A method is provided for verifying system de-

signs against a more general Reference Model architecture based on comparison

of POSETs.

4 The Experiment

In order to help answer the questions about the applicability of ADLs to RCS,

the Rapide ADL was used to specify a large piece of the RCS Intelligent Control

Node. The speci�cation was developed by two of the coauthors: one focusing on

the study of ADLs; and the other, a domain expert in design of RCS systems

who regularly reviewed the model and guided its evolution. The speci�cation was

reviewed and veri�ed by a larger group of experts in RCS. In addition, the use of

an ADL to ascertain conformance of individual system designs to the Reference

6

Model Architecture was examined. A detailed description of the experiment,

including the Rapide source can be found in [7].

Overview of the Prototype Speci�cation Component interfaces were de-

�ned for each 4-D/RCS Intelligent Control Node together with the events han-

dled, sent, and received and applicable constraints for the module. The speci�-

cation provided the decomposition of the Control Node into its major subcom-

ponents. Behavior Generation was further decomposed into Job Assigner (JA),

a set of Schedulers (SC), a set of Executors (EX), and a Plan Selector (PS).

World Modeling (WM) was decomposed into Simulation and Knowledge Base

components. The architecture speci�cation included the connections between the

interfaces de�ned for the modules. A su�cient amount of behavior was included

to allow the architecture to be simulated using the Rapide toolset. The entire

speci�cation encompassed more that 1000 lines of Rapide code.

Details of Job Assigner and Scheduler Functions The use of ADLs to

specify RCS is illustrated in a sample Rapide description of the interaction of

two subcomponents of the RCS Behavior Generation Module: The Job Assigner

and a Scheduler (of which there may be several instances). The conceptual design

for this representative fragment of the Reference Model functionality is shown

graphically in Figure 3. The fragment contains only a subset of the actual events

and behavior de�ned for these components. The speci�cations of algorithms for

computing schedules and selecting plans in underlying modules are omitted from

the Reference Model Architecture because they are application-speci�c.

Fig. 3. Job Assigner and Schedulers in the Behavior Generation Module

Figure 3 shows a Job Assigner component de�ned as a Rapide interface.

The Job Assigner interface signature receives a Do Task event representing an

input task in which ?Task is the argument variable for a task name. The Job

7

Assigner generates a Fetch task frame event with the job name as an argument

that is passed to the World Modeling module. World Modeling returns a task

frame data structure containing information necessary to perform the task re-

ceived by Job Assigner as a RCV Task Frame event. The underlying module

for Job Assigner decomposes the task frame into job assignments (not shown)

for the schedulers. Figure 3 depicts the generation of a Schedule Job event, rep-

resenting a job assignment to the Scheduler interface. The Scheduler receives

the Schedule Job event. Its underlying module computes a schedule, which is

transmitted as an event through the interface outside of Behavior Generation

to the World Modeling plan simulator. This is depicted as a plan in Figure 2.

Ultimately, the simulated plans are evaluated by Value Judgement and returned

to the Plan Selector in the Behavior Generation module (not shown in the ex-

ample). The Scheduler interface is also shown as returning a Status event with

a ?Status variable. Values for speci�c status events would be generated in un-

derlying modules that conform to the interface.

Speci�cation of the Interfaces, Behavior, and Constraints A partial

Rapide speci�cation of the Job Assigner interface is given below. The Job Assigner

is declared to be of type Interface. The signatures for the events received by, and

sent from this interface are provided including variable arguments and their

types.

TYPE Job Assigner Interface IS INTERFACE;

ACTION

IN

Do Task (Task : Task Command Frame),

RCV task frame (Task : Task Command Frame; TF : Task Frame),

SC Status (CR : Controlled Resources; ST : String);

OUT

Schedule Job (Job : Task Command Frame),

Fetch task frame (Task : Task Command Frame),

Decompose task frame (TF : Task Frame),

JA Status (?status);

BEHAVIOR

(?Task : Task Command Frame)

Do Task (?Task) jj> Fetch task frame (?Task);

(?Task : Task Command Frame; ?TF : Task Frame)

RCV task frame (?Task, ?TF) jj> Decompose task frame(?TF);;

END;

A portion of the behavior depicted in Figure 3 is also speci�ed. The receipt

of a Do Task command to perform a task triggers a request for a task frame con-

taining essential information needed to perform the task. A causal connection is

de�ned between these two events. The receipt of a RCV task frame command

results in a Decompose task frame in which (?TF) denotes the variable place-

holder for the task frame which is transferred. The Schedule Job and Status

8

events are generated through the interface by underlying conforming modules

which also instantiate the necessary arguments. These are omitted from this

portion of the speci�cation example.

The speci�cation of the Job Assigner is supplemented by the declaration of

constraints shown below.

CONSTRAINT

{ (C1) Do not allow causally independent Do Task and Schedule Job events

NEVER (?Task : String; ?Job : String)

Do Task (?Task) jj Schedule Job (?Job);

{ (C2) Do not allow causally independent Do Task and Status Message events

NEVER (?Task : String; ?status : String)

Do Task (?Task) jj JA Status (?status);

Constraint C1 prohibits the independence of Do Task and Schedule Job events,

while constraint C2 prohibits independence of Do Task and Status Events. These

constraints require that that these events must always be related in a causal se-

quence.

Speci�cation of the Architecture The speci�cation of the portion of the

Behavior Generation architecture from Figure 3 is given below. This speci�ca-

tion shows the connection of the events between the Job Assigner, an array of

Schedulers and the Plan Selector.

ARCHITECTURE BG Module Arch () . . .

IS

JA : Job Assigner Interface IS Job Assigner Module();

SC : array [integer] of Scheduler Interface IS

(1..$Num Controlled Resources,. . .)

PS : Plan Selector Interface IS Plan Selector Module();. . .

CONNECT

(?Job : Task Command Frame)

JA.Schedule Job(?Job) jj> SC i.RCV Schedule Job(?Job);

(?CR : Controlled Resources; ?ST : String)

SC[i].SC Status (?CR, ?ST) jj> JA.SC Status (?CR, ?ST);

. . .

(?CR : Controlled Resources; ?Job : Task Command Frame;

?Sched : Schedule; ?ST :string)

PS.SND PS Status (?CR, ?Job, ?Sched, ?ST) jj>
SC[i].RCV PS Status (?Job, ?Sched, ?ST);

Note that each of these components is declared as an instance of one of the types

de�ned above. This is followed by explicit connections between OUT events in

the interface of one component and IN events in another interface via the CON-

NECT keyword. The Rapide symbol \jj>" is used to indicate a causal connection
between these events.

9

Execution of the RCS Intelligent Control Node Architecture The dec-

laration of causal connections between events in Rapide interfaces and in the

declaration of the architectures de�nes a causal sequence of events. The exe-

cution of this architecture produces a POSET, which can be used to analyze

sequences of events and causality. A portion of the POSET generated by the

execution of the RCS control node is shown in Figure 4, which omits intervening

events not described in the partial speci�cations given above. The �gure shows

the causal connection between the Do Task event and a Fetch Task Frame event

that retrieves information necessary to initiate scheduling activity. When the

Job Assigner receives the Task Frame, this triggers the Decompose Task Frame

event followed by the Schedule Job event that is forwarded to a set of Schedulers.

POSETs such as the one shown were useful for analyzing sequences of events

and communicating behavior of the architecture.

Do_Task (JA)

Fetch_Task_Frame RCV_Task_Frame (JA)

Decompose_Task_Frame (JA)

Schedule_Job (JA)

RCV_Schedule_Job

(SC #1)

RCV_Schedule_Job

(SC #2)

RCV_Schedule_Job

(SC #3)

intervening
events

Fig. 4. Event trace of Rapide Reference Model Speci�cation

Veri�cation of Individual SystemDesigns Against the Reference Model

Architecture Rapide provides a capability for verifying that the behavior of a

system design, or concrete architecture, conforms to that of a more abstract ar-

chitecture, such as the RCS Reference Model Architecture. This is accomplished

by �rst declaring a set of constraints in the abstract architecture and then declar-

ing an equivalence, or mapping, of events from the concrete to the abstract ar-

chitecture. The abstract architecture is then executed with the \mapped" events

of the concrete architecture replacing events originally de�ned in the abstract

architecture to create a POSET event trace similar to Figure 4. Conformance to

constraints of the abstract architecture is tested. If constraints are violated, error

messages appear in the POSET as events, indicating that the concrete architec-

ture is non-conformant. The conformance veri�cation feature was exercised and

found to be useful. One of the challenges facing RCS developers is ensuring that

their systems comply with the RCS reference model architecture.

5 Conclusions and Recommendations

5.1 Specifying and Analyzing RCS

Based on informal review by RCS experts, the Intelligent Control Node speci-

�cation was successful in capturing and representing major RCS architectural

10

concepts. To date, it is the most rigorous representation of the reference model

architecture. However, the speci�cation had to be simpli�ed and modi�ed to

allow the application of speci�c RCS keywords, and supplemented by the use of

graphical support. The simulated execution of the Control Node Architecture

reinforced the speci�cation and proved to be a valuable aid in communicating

the architecture by enabling reviewers to visualize the topology and high-level

execution of the Intelligent Control Node.

The structure and behavior of the RCS Reference Model Architecture were

captured by Rapide. Aided by the simpli�cation of the speci�cation and the

use of graphics, the Control Node module Interfaces and signatures were clearly

de�ned. Module connections, even though not de�nable in Rapide as explicit

types{or �rst-class objects{were also easily communicated. The successful rep-

resentation of the RCS Control Node hierarchy indicates that representation

of other parts of the multi-level architecture described in Section 2 should be

possible.

The ability to create a precise, communicable speci�cation of the RCS Refer-

ence Model Architecture led to potential improvements to the architecture itself.

Two possible changes to the Architecture as described in [5] were identi�ed, one

of which will be described. In the model described in Section 4, Job Assigner

applies a Fetch Task Frame operation to retrieve the task knowledge necessary

for task decomposition. Although this operation is not explicitly stated in the

RCS Reference Model, we found it consistent with the usage of task frames and

found it e�ective in our experiment. Therefore, this operation may be proposed

as one of the accepted Job Assigner functions in its speci�cation. This illustrates

the potential of ADLs as practical tools for development of the Reference Model

Architecture and software designs in general.

The use of an ADL to verify the behavior of an application system de-

sign against the Reference Model Architecture was demonstrated as a proof-of-

concept in the Control Node prototype. However, RCS domain experts maintain

that veri�cation of the system topology is at least equally important for the

Reference Model Architecture. This form of veri�cation involves showing that

the application system contains the same basic structure including components,

event connections, and data structures as the Reference Model. As a result, two

kinds of veri�cation are important from the standpoint of RCS. The �rst is ver-

i�cation to the structure of the Reference Architecture including existence of

speci�c components, events, and control ows. The second is veri�cation of be-

havior, including behavior within components and behavior across component

connections and an entire architecture. Veri�cation of behavior is the focus of

Rapide.

Further research is necessary to de�ne techniques for demonstrating con-

sistency with system topology. Work in extending Rapide's POSET model to

veri�cation of system structure has been reported in [27]. In SADL [19], Mori-

coni describes a general approach, called architectural re�nement, that utilizes

theorem proving techniques. In this approach, proofs are constructed to show

that in the case when a more general or abstract architecture is applied to pro-

11

duce a more detailed design, that any system that correctly implements the more

detailed design also correctly implements the abstract architecture. Re�nement

is used to demonstrate correctness with respect to the connectivity of events

between modules at di�erent levels of abstraction; and this approach may be

applicable to the problem of verifying application system designs.

5.2 Appropriate Abstractions for RCS Architectures

Owing to evidence in biological systems and theory of control science, RCS pre-

scribes rules for decomposing the control hierarchy for a system. In his \Outline

for a Theory of Intelligence," [2], Albus proposed that:

\In a hierarchically structured, goal-driven sensory interactive, intelligent

control system architecture, control bandwidth decreases about an order of mag-

nitude at each higher level, perceptual resolution of spatial and temporal pat-

terns decreases about an order of magnitude at each higher level, goals expand

in scope and planning horizons expand in space and time about an order of

magnitude at each higher level, and models of the world and memories of events

decrease in resolution and expand in spatial and temporal range by about an

order of magnitude at each higher level."

These English language rules must be encoded into ADLs in order to rep-

resent fully the semantics of an RCS system. Temporal scales and spatial ex-

tents relative to other levels of the hierarchy must be represented and validated.

While existing ADLs can meet some of these requirements, further work on ADLs

adding methods to de�ne these measures and to express constraints among them

is needed to allow speci�cations such as those quoted to be stated and applied.

The syntactic description was simpli�ed and altered to conform to the de-

scriptive forms familiar to RCS experts. RCS experts found speci�cations much

easier to understand when RCS terminology was used. As an example of this

approach, instead of declaring an RCS module such as SCHEDULER as a compo-

nent or interface type, it should be possible to introduce a higher-level language

type called RCS Module in a speci�cation that could serve as a \meta type"

for the de�nition of interface types that are speci�c to RCS such as SCHED-

ULER. As a long-term goal, ADLs should allow speci�cations to be stated at

a su�ciently high level of abstraction for non-computer scientists so that they

are easier to understand than a program written in C++. This argues for the

development of either a exible ADL with an extensible syntax that can be

specialized for RCS or a domain-speci�c ADL that utilizes RCS terminology.

To facilitate communication of RCS system behavior, an ADL must provide

an e�ective means for abstractly specifying algorithms, component behavior,

and performance. While some ADLs may allow representation of all or most of

the behavior needed for RCS, this requirement may lead to de�ning additional

language constructs to more directly represent speci�c RCS behavior. It may also

require additional facilities for guiding developers in generating their component

speci�cations, through for example, templates that they can �ll in, as proposed

in [12] and [17]. As with system structure, such capabilities would allow ADLs

to specify essential aspects of behavior at a higher level of abstraction than for

12

programming languages. These capabilities could be part of a domain-speci�c

ADL with a syntax that is customized for RCS systems.

5.3 General Software Development Support

It is often important to be able to divide the processing into atomic process-

ing components that can be executed serially or in parallel, which will facilitate

process cessation and make it deterministic. Therefore, it is important that an

ADL be able to specify processing characteristics such as process modulariza-

tion, parallel and serial execution. Serial and parallel processing capabilities are

provided by some ADLs, including Rapide.

It is desirable to allow capturing performance statistics, such as timing,

states, and errors. These would be useful in system diagnostics and mainte-

nance. It should be noted that Rapide does provide the capability to capture

time-related data which could not be exercised in this study due to resource

limitations.

For designing real-time systems, an ADL should de�ne notions of duration

in time of processes, mixed asynchronous and synchronous processing, spatial

scope of a process or set of processes, algorithm and component complexity, and

determinism in execution.

One of the bene�ts of rigorously specifying RCS designs is that it is possible

to check the completeness and internal consistency of the reference model ar-

chitecture before it is used as a basis for developing individual system designs.

By providing a basis for formalized, or at least rigorous speci�cation, most ADL

products surveyed also provide a basis for development of automated analysis

capabilities. In the case of Rapide, analysis is based on simulation of the execu-

tion of a system architecture and analysis of POSET traces. This proved to be

valuable for visualizing, understanding, and verifying system behavior.

Other ADLs take di�erent approaches using automated tools for analysis

of speci�cations based on formal methods approaches. SADL [20] uses w-logic,

a weak second-order logic, as a basis for proving the correctness of mappings

between architectures at di�erent levels of abstraction. Wright [6] uses First-

Order Logic to specify constraints and a Communicating Sequential Processes

(CSP) computational model to specify behavior of components and connections,

providing a basis for a set of automated checks on speci�cation consistency and

completeness. Examples from Wright are checks that determine the existence of

a deadlock condition within the speci�cation of the behavior of an architecture

and checks to determine compatibility between connections and components.

5.4 Transfer of ADL Concepts into Real-Time Development Tools

Presently, there are a number of public domain and commercially available soft-

ware support tools for design and simulation of real-time software systems. These

tools have well-developed facilities for designing and implementing individual

software systems. However, they do not typically provide any guidance to users

13

about how to structure their system or make other design decisions. ADLs intro-

duce notions of software architecture that could potentially provide additional

structure in order to improve the capabilities of these tools. Users or enterprises

could set preferences in term of which architecture or architectural style is to be

used in developing systems. The tools would then either guide designers as the

system is being developed or could ag situations where the architecture or style

are violated. Further e�ort is necessary to explore the potential of infusing ADL

concepts into real-time development support tools. This avenue could provide

the bene�ts of ADLs to end users while shielding them from having to learn a

new language and concepts. The real-time development tools would guide users

in constructing systems per rules for a prescribed architecture through their

graphical user interfaces. The users would not be burdened with the underlying

mechanics of the ADL speci�cation. In addition to design, analysis and sim-

ulation capabilities from the ADLs could be incorporated into the tools. The

tools could generate executable or source code. This would automatically as-

sure traceability from the desired architecture through to the executable code.

Eventually, tools using ADLs could support highly automated composition of

real-time systems from existing or tailorable components.

5.5 ADLs and Component-Based Software Reuse

There is potentially a strong relationship between ADLs and component-based

software reuse. ADLs go beyond providing just the signature speci�cation for a

component or subsystem. They allow developers to see the big picture, where

their particular pieces �t in, and how the pieces are expected to behave or inter-

act with the rest of the system. Simulation of components provides additional

bene�ts not available in typical notations or descriptions of software components.

ADLs could be extended to support reuse with additions of speci�c language

features based on reuse concepts from the literature on domain engineering [14]

[24] [25], thus providing a basis for automation of software development. Domain

engineering is the process of developing reusable software for a family of systems

with similar requirements. An architecture speci�cation may identify optional

components, parameterizable components, or even entire subarchitectures that

can be varied. Guidelines would be used by developers with the aid of support

tools to select options and customize the speci�cation for particular applications.

This concept could be further extended by the use of software support tools that

assist developers in selecting and modifying system designs and components. The

resulting system speci�cations potentially could be automatically composed and

generated using the support tools. An example of such a system for automated

generation of system requirements is provided in [8].

6 Summary

This report has provided the results of an investigation into the use of architec-

tural description languages to represent the RCS Reference Model Architecture

14

and RCS software components. ADLs have the capabilities to represent RCS

and to be useful tools for further developing RCS. However, several areas of

research are suggested in order to make ADLs more e�ective tools for RCS soft-

ware speci�cations. Transfer of ADL concepts into existing real-time software

development tools is another important direction to pursue. It is the hope of the

authors that this work provides a contribution towards both the development of

ADLs as tools for software component technology and the formalization of the

RCS Reference Model Architecture.

Acknowledgements The authors wish to thank John Kenney, David Luckham,

and other members of the Stanford University Rapide Project for their generous

assistance with the Rapide ADL and software support tools. Thanks is also

provided to NIST sta� members who reviewed this paper and the RCS prototype

speci�cation and provided critical commentary.

References

1. Albus, J.S., Lumia, R., Fiala, J., and Wavering, A. 1989. NASREM - The

NASA/NBS Standard Reference Model for Telerobot Control System Architecture.

Proc. of the 20th International Symposium on Industrial Robots, Tokyo, Japan.

2. Albus, J. S. 1991. "Outline for a Theory of Intelligence. IEEE Transactions on

Systems, Man, and Cybernetics, Vol. 21, No. 3:473-509.

3. Albus, J.S., Lumia, R. 1994. The Enhanced Machine Controller (EMC): An Open

Architecture Controller for Machine Tools. Journal of Manufacturing Review, Vol.

7, No. 3, pgs. 278-280.

4. Albus, J. S. 1995. The NIST Real-time Control System (RCS): An Application

Survey. Proc. of the AAAI 1995 Spring Symposium Series, Stanford University,

Menlo Park, CA.

5. Albus, J. S. 1997. RCS: A Reference Model Architecture Demo III. National Insti-

tute of Standards and Technology, Gaithersburg, MD, NISTIR 5994.

6. Allen, R. 1997. A Formal Approach to Software Architecture. PhD Thesis, Carnegie

Mellon University, Pittsburgh, PA, Technical Report Number: CMU-CS-97-144.

7. Dabrowski, C., Huang, H., Messina, E., Horst, J., 1999. Using Architectural De-

scription Languages to Formalize the NIST 4-D/RCS Reference Model Architecture.

National Institute of Standards and Technology Draft NISTIR.

8. Dabrowski, C. and Watkins, C. 1994. A Domain Analysis of the Alarm Surveil-

lance Domain. National Institute of Standards and Technology, Gaithersburg, MD,

NISTIR 5494.

9. Garlan, D., and Perry, D. 1995. Introduction to the Special Issue on Software Ar-

chitecture. IEEE Transactions on Software Engineering, Vol. 21, No. 4, pp. 269-274.

10. Garlan, D., and Shaw, M. 1994. Characteristics of Higher-Level Languages for

Software Architecture. Software Engineering Institute, Carnegie-Mellon University,

Pittsburgh, PA, CMU/SEI-94-TR-23.

11. Horst, J. A. 1993. Coal Extraction Using RCS. Proc. of the 8th IEEE International

Symposium on Intelligent Control, Chicago, IL, pp. 207-212.

12. Horst, J. A., Messina, E., Kramer, T., Huang, H. M. 1997. Precise De�nition of

Software Component Speci�cations. Proc. of the 7th Symposium on Computer-

Aided Control System Design (CACSD '97), Gent, Belgium, pp.145-150.

15

13. Huang, H. and Messina, E. 1996. NIST-RCS and Object-Oriented Methodologies of

Software Engineering: A Conceptual Comparison. Proc. of the Intelligent Systems:

A Semiotic Perspective Conference, Vol. 2: Applied Semiotics. Gaithersburg, MD,

pp. 109-115.

14. Kang, K., Cohen S. , Hess J., Novak W., and Peterson S. 1990. Feature-

Oriented Domain Analysis (FODA) Feasibility Study. Software Engineering Insti-

tute, Carnegie-Mellon University, Pittsburgh, PA, CMU/SEI-90-TR-21.

15. Luckham, D. 1996. Rapide: A Language and Toolset for Simulation of Distributed

Systems by Partial Ordering of Events. Stanford University, Palo Alto, CA. CSL-

TR-96-705.

16. Medvidovic, N. and Taylor R. 1999. Classi�cation and Comparison Framework

for Software Architecture Description Languages. Accepted for publication in IEEE

Transactions on Software Engineering.

17. Messina, E., Horst, J., Kramer, T., Huang, H. Michaloski, J. 1999. Component

Speci�cations for Robotics Integration. Autonomous Robots Journal, Volume 6,

No. 3, pp. 247-264.

18. Messina, E., Horst, J., Kramer, T., Huang, H., Tsai, T., Amatucci, E. A

Knowledge-Based Inspection Workstion. Proc. of the IEEE International Confer-

ence on Information, Intelligence, and Systems. Bethesda, MD. November, 1999.

19. Moriconi, M., Qian, X. and Riemenschneider, R. 1995. "Correct Architecture

Re�nement. IEEE Transactions on Software Engineering, Volume 21, Number 4,

pp.356-372.

20. Moriconi, M and Riemenschneider, R. 1997. Introduction to SADL 1.0: A Language

for Specifying Software Architecture Hierarchies. Stanford Research Institute, Palo

Alto, CA, TR SRI-CSL-97-01.

21. OMG. 1999. RFP: UML Pro�le for Scheduling Performance, and Time Object

Management Group Document ad/99-03-13. Object Management Group, Framing-

ham, MA. http://www.omg.org.

22. Shaw, M. 1994. Comparing Architectural Design Styles. IEEE Software, November,

1994, pp. 27-41.

23. Shoemaker, C. M. and Bornstein, J. A. 1998. Overview of the Demo III UGV

program. Proc. of the SPIE Robotic and Semi-Robotic Ground Vehicle Technology

, Vol. 3366, pp.202-211.

24. SPC 1992. Domain Engineering Guidebook, Software Productivity Consortium.

Herndon, VA. SPC-92019-CMC, Version 01.00.03.

25. STARS. 1993. Organizational Domain Modeling, Volume I - Conceptual Founda-

tions, Process And Workproduct Description, Informal Technical Report for the

Software Technology for Adaptable, Reliable Systems (STARS), Report Number

STARS-UC-05156/024/00.

26. USPS. 1991. Stamp Distribution Network, Advanced Technology & Research Cor-

poration, Burtonsville, MD. USPS Contract Number 104230-91-C-3127 Final Re-

port.

27. Vera, J., Perrochon, L., Luckham, D. 1998. Event-Based Execution Architectures

for Dynamic Software Systems. Proc. TC2 First Working IFIP Conference on Soft-

ware Architecture (WICSA1). San Antonio, Texas, USA. Kluwer. pp. 303-317.

28. Vestal, S. 1993. A Cursory Overview and Comparison of Four Architecture De-

scription Languages. Honeywell Technology Center, February 1993.

